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Hypersonic Flow Simulation by the Gas-Kinetic
Bhatnagar—Gross—Krook Scheme
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The gas-kinetic Bhatnagar—Gross—Krook (BGK) scheme is extended to hypersonic flow simulations and thus
shows that the compressible inviscid flow solutions of the simulations are efficiently and accurately obtained from the
BGK scheme without the disastrous shock instability phenomenon that occurs in most hypersonic flow simulations
involving strong shock waves. For this particular study, the effect of chemistry in hypersonic flows has not been
taken into account. Hence, the assumption of calorically perfect gas is imposed in all simulations. The high-order
resolution of the scheme is achieved by utilizing monotone upstream-centered schemes for conservation laws-type
initial reconstruction. While, an implicit-type time-integration method known as the approximate factorization—
alternating direction implicit is adopted for computing both steady and unsteady calculations. The gas-kinetic
scheme is tested meticulously in four two-dimensional numerical examples, namely, the blunt-body problem, the
double Mach reflection problem, the axisymmetric blunt-body problem, and the flow over a 15-deg ramp. The
numerical results of the BGK scheme when compared with the other schemes and experimental data show that
this numerical technique is robust, accurate, and stable for hypersonic flow.
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1. Introduction

REMENDOUS efforts have been devoted and great progress
has been achieved in the field of computational fluid dynamics
of hypersonic flows in the past decade.'~* An evident achievement
in this field is the development of the numerical scheme for spatial
discretization. Currently, the most notable and successful numeri-
cal flux function for high-speed flow computations belongs to the
upwind difference schemes because of their superior accuracy. The
flux-difference-splitting (FDS) framework is one of the most suc-
cessful groups among the upwind difference schemes that is widely
used and studied. The Roe’s FDS scheme,’ for instance, is the most
popular owing to its accuracy for compressible inviscid and vis-
cous flow simulations. However, the occurrence of transverse shock
instability and negative internal energy limits its usage in the compu-
tation of high-speed flows with strong shock waves and expansion
fans.® This is supported by the findings of Peery and Imlay’ for
blunt-body computations with Roe’s FDS, which produce the car-
buncle phenomenon. This phenomenon is a numerical instability
that occurs when capturing a strong shock wave in multidimensional
computation. In addition to the FDS schemes, another group of up-
wind difference schemes, namely, the flux-vector-splitting (FVS)
schemes can lack the robustness, accuracy, and efficiency in com-
parison to the FDS schemes. Itis well known that FVS schemes have
a large numerical dissipation on contact discontinuities, which ex-
plains the reason for their poor shock resolution capability at contact
discontinuities.®
The development of gas-kinetic schemes has attracted much at-
tention in recent years. These schemes are based on the approximate
collisional Boltzmann equation.>'” A particular strength of the ki-
netic schemes lies precisely where FDS schemes often fail, such
as carbuncle phenomenon, entropy condition, and positivity.'' =3
There are mainly two kinds of gas-kinetic schemes, and the dif-
ferences lie within the governing equations used in the gas evo-
lution stage. One of the well-known kinetic schemes is called the
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kinetic flux vector splitting (KFVS), which is based on the collision-
less Boltzmann equation, and the other is based on the collisional
Bhatnagar-Gross—Krook (BGK) model.!*!5 Like any other FVS
method, the KFVS scheme is very diffusive and less accurate in
comparison with the Roe-type FDS method. The diffusivity of the
FVS schemes is mainly caused by the particle or wave-free trans-
port mechanism, which sets the Courant—Friedrichs—Lewy (CFL)
time step equal to particle collision time.'® To reduce diffusivity,
particle collisions have to be modeled and implemented into the gas
evolution stage. One of the distinct approaches to take particle colli-
sion into consideration in gas evolution can be found in Xu.’ In this
method, the collision effect is considered by the BGK model as an
approximation of the collision integral in the Boltzmann equation.
It is found that this gas-kinetic BGK scheme possesses accuracy
that is superior to the flux-vector-splitting schemes and avoids the
anomalies of FDS-type schemes.®%!1:17:18

The paper is organized as follows. In Sec. II, the governing com-
pressible Euler equations for two-dimensional flow expressed in
both Cartesian and generalized coordinates are presented. In the sub-
sequent section, the numerical formulation of the gas-kinetic BGK
scheme and the proper way of extending the scheme to higher-order
accuracy via the monotone upstream-centered schemes for conser-
vation laws (MUSCL) interpolation technique will be addressed.
Then, an implicit time-integration method is applied on the formu-
lated BGK scheme. In Sec. IV, the kinetic scheme is applied to
four hypersonic flow numerical examples. The results produced are
highly stable and accurate at high speed with strong shock waves.
The last section provides the conclusions.

II. Governing Equations

The two-dimensional compressible Euler equations expressed in
Cartesian coordinates are written as

oW  OF 3G

—+—+—=0 1
ot + dx + dy M
where
P pU pV
U U*+ uv
w= |V I L DT B
oV pUV oVo+p
pe (pe+p)U (pe+p)V
2

InEq. (1), p, pU, pV, and pe are the macroscopic mass, x momen-
tum, y momentum, and total energy density respectively, and p is
the pressure.

Using eq. (1), when transformed from Cartesian coordinates
(x, y) to generalized coordinates (&, 1), the following form is ob-
tained:

oW aF G

oW o -0 3
ar T 9E + an ®)
where
W=J"'w, F=J"'&F+&G)
G =J"' (. F +1,G) )

InEq. 4), J = (6.1, — &1, ) is the Jacobian of transformation. The
manner in which the metrics &,, &, 1., n, and the Jacobian of trans-
formation J are evaluated is detailed in Hoffmann and Chiang.'®

III. Numerical Methods

A. Gas-Kinetic BGK Scheme
The BGK model in the two-dimensional case is’
of _ of | f _ (&= 1)

M TV T 1

&)

where f is the real particle distribution function and g is the equi-
librium state approached by f within a collision timescale 7. Both
f and g are functions of space x, y; time #; particle velocity u, v;
and internal degrees of freedom ¢.

The equilibrium state g in the two-dimensional BGK model for
the Euler equations is the Maxwell-Boltzmann distribution function
and has the following form:

g=p0/m) KPP exp(—Alw — U + (v — V)’ + &1} (6)

where U and V are the macroscopic velocities in x and y direc-
tions, A is a function of density and pressure A = p/2p, and ¢ is
a K-dimensional vector that accounts for the internal degrees of
freedom such as molecular rotation, translation, and vibration. The
dimensional vector K is related to the specific heat ratios and the
space dimension by the relation K = (4 —2y)/(y — 1), where for a
diatomic gas y =1.4.

The relations between the densities of mass p, momentum
(pU, pV), and total energy ¢ with the distribution function f are
derived from the following moment relation:

P
pU

= UdE 7
% /.f (N
e

where dE = du dv d¢ is the volume element in the phase space and
W is the vector of moments given as

1
u

v
%(u2 +v24+¢%)

With the moment relation defined in Eq. (7), a similar approach
could be adopted in obtaining the numerical fluxes across cell inter-
faces, and they are given as

sz/uflI/dE, Gy=/vf\vds ©

where Fy and G, are the physical flux in the x and y direction,
respectively.

A general solution f of Eq. (5) at the cell interface (x; 41,2, ¥;)
in two-dimensions is obtained as'®

FO,0.1,u,v,6) = (1 —¢)go + @fo(—ut, —vt) (10

where ¢ = e~/" is an adaptive parameter. For a first-order scheme ¢

can be fixed in the numerical calculations. When the BGK scheme is
extended to high order, the value of ¢ should depend on the real flow
situations. This option is necessary to prevent numerical oscillations
and physically correct in that it accounts for the nonequilibrium
behavior of the gas flow in the discontinuity region. A possible
choice for ¢ in a high-order scheme is to design a pressure-based
stencil, such as the switch function in the Jameson—Schmidt—Turkel
scheme.”!%!® However, the value of ¢ for the higher-order BGK
scheme is fixed in this study.

Finally, the gas-kinetic BGK numerical flux across the cell inter-
face in the x direction can be computed as

F. = /Mf(O, 0,7,u,v, c)WdE, Fo=(1—-@F +9F/
an

where F¢ is the equilibrium flux function and F, 7 is the nonequilib-
rium or freestream flux function.

The numerical flux for the BGK scheme at the cell interface in
the x direction is obtained from Eq. (11) as

— (1 — e f
Fi+%,j—(1 (/’)Fi_*_%vj"‘(l)l'ﬂi_'_%_j 12)
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and the numerical flux at the cell interface in the y direction is
obtained in a similar manner, and the resulting relation is presented
as

e f
Gy =0 =0)G  +9G/ (13)

B. Reconstruction Stage

For high-order spatial accuracy, a method known as the MUSCL
approach?® is adopted. To avoid spurious oscillations in the solution,
a limiter is used to extrapolate the primitive variables at the cell
interfaces. In this study, van Leer’s limiter is employed. Hence, the
left and right states of the primitive variables p, U, V, p at a cell
interface could be obtained through the nonlinear reconstruction of
the respective variables and are given as

_ 1 AQH—%,_[ A
Ql—Qi,j‘f‘E(P 50,y Qi 1

- (2920 ) 5 14
Qr_Qi+1,j_§¢ m QH_%J ( )

where the subscripts / and r correspond to the left and right sides of
a considered cell interface. In addition, AQ; 41,2, j = Qi+1,j — Qi -
The van Leer’s limiter used in the reconstruction of flow variables
in Eq. (14) is given as

P = (Q+12)/0+ ) 5s)

By using the extrapolation relations in Eq. (15), a second-order
spatial accurate scheme is produced.

C. Implicit Time-Integration Method

An implicit method known as the approximate-factorization—
alternating-direction-implicit (AF-ADI) scheme is employed for all
computations in this study. When applying the Euler backward time
discretization for the AF-ADI method, the governing equations in
the computational domain are given as

I+ At i(A++A*)+ i(1§++1§’*) nAW- = _R".
o an "

LJ

R = Ar aﬁ+aé ' (16)
L o .

where R denotes a residual vector and AW, = W"+l W"
The flux Jacobians denoted by A= 8F/8W and B= 8G/8W 1n
Eq. (16) can be taken as the Jacobian from van Leer’s flux. These
are given in Pulliam.? The left-hand side of Eq. (16) can be effi-
ciently inverted by using the AF-ADI method.”!

IV. Results and Discussion

Here the solutions of four two-dimensional numerical examples
of hypersonic flow are presented. The computed results of the BGK
scheme are compared with available experimental data, verification
data from literature, and also with numerical results of Roe’s FDS
scheme. The findings show that the BGK scheme gives better results
than the Roe’s FDS scheme in term of accuracy, robustness, and
shock stability.

A. Case 1: Blunt Body

This first test case provides the opportunity to test the BGK
scheme for any possible failure because of the carbuncle phe-
nomenon. The carbuncle phenomenon for a hypersonic flow around
ablunt body was first reported by Peery and Imlay.” For steady-state
flow, a Godunov-type scheme admits a spurious solution in which
a protuberance grows ahead of the bow shock along the stagnation
streamline. However, before going any further, one has to ascertain
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Fig. 1 Physical configuration for the blunt body.
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Fig. 2 Wall-pressure coefficient distributions for BGK scheme and
experimental data.

that the computational results of the numerical schemes are physi-
cally correct and accurate. Thus, an initiative is taken here initially
by validating the schemes with a test case that has experimental
data. Hence, the blunt body will be tested with two sets of flow
conditions, that is, the first condition is used for validation with the
experimental data and the second condition is used for studying the
carbuncle phenomenon of the hypersonic flow around blunt body.

The mesh size used for this problem is 65 x 113, and the geometry
is shown in Fig. 1. For validating the numerical schemes, Lee*?
provided sets of measurements in hypersonic flows around a blunt
body, which remain fully laminar and low enthalpy flow. These data
can be used efficiently to examine the accuracy of numerical scheme
itself because the uncertainties caused by turbulence and chemical
reactions are excluded. The following flow conditions are chosen
for generating numerical data:

My =15.622, o =0deg, po =1.814x 1073 kg/m’

Uy = 2108.61 m/s, P, = 23.622 N/m>

The numerical schemes for this typical problem are implemented
at second-order accuracy and at CFL number of 1.0 with the AF-ADI
method. The iterations were carried out until steady-state solution
is reached. Figure 2 shows the computed pressure coefficient C,
distributions along the wall surface of the blunt body in clockwise
direction, starting from the stagnation point. It contains the distribu-
tions for the BGK scheme without the Roe scheme simply because
the Roe scheme failed to produce results for this problem if im-
plemented without any boundary-layer corrections. From Fig. 2, it
is observed that the BGK scheme is able to predict accurately the
wall-pressure coefficient as validated by the experimental data of
Lee.? In addition, Fig. 3, which is obtained from Lee,? is also in-
cluded to further demonstrate the computational capabilities of the
BGK scheme. When comparing the results of Fig. 2 with Fig. 3,
one can deduce that the BGK scheme is as accurate as or better
than the numerical schemes employed in Lee.?? The reasoning be-
hind this claim is that the numerical results of Fig. 3 are produced



1430 CHIT ET AL.

Wall Pressure Coef.

2.00 Experiment
& AUSMPW+

Roe's FDS (B.L. corrected)
Central (B.L. corrected)

Van Leer FVS

Cp

1.00 —

0.00 | ‘ |

0.00 30.00 60.00 90.00
0

Fig. 3 Wall-pressure coefficient distributions from Lee.?2

by compressible viscous flow algorithms, and some schemes even
employed boundary-layer corrections in order to get satisfactory
results.

To study the shock instabilities that occur in hypersonic flow for
a blunt body, a second set of flow conditions is proposed as fol-
lows: freestream Mach number of 8.0 and at 0-deg incident angle.
The boundary conditions for this problem are set as follows: the
outer boundary of the domain, which is located away from the blunt
body is set at the freestream; the boundaries that are located far
downstream at the top and bottom of the blunt body, where the
flow is supersonic, and extrapolation is used; and finally, the bound-
ary condition at the blunt body itself is set by using the slip wall
condition.

Again, the BGK scheme is implemented with similar criterion as
stated as just stated. Figure 4a shows the pressure contour and the
distribution of pressure along the stagnation line of a half-cylinder
for the BGK scheme. Similarly, the numerical results for the second-
order Roe’s FDS scheme are presented in Fig. 4b. When the numer-
ical results of these two schemes as depicted in Figs. 4a and 4b
are compared to the numerical results from Kim et al.,® which are
shown in Fig. 4c, it is obvious that the BGK scheme is superior
to the Roe scheme. The Roe scheme produced numerical solutions
with the occurrence of the so-called carbuncle phenomenon. Un-
symmetrical flow behavior and the protuberance of the bow shock
can be clearly seen in Fig. 4b. This shock instability phenomenon
is not present within the BGK scheme, where the scheme is able
to produce numerical results that are as accurate and stable as the
shock-stable Roe scheme. In addition, the BGK scheme is able to
produce excellent numerical results without any need of modifying
the flux function as done by the shock-stable Roe scheme in order
to avoid the occurrence of shock instabilities at high-speed flows.
This implies that the BGK scheme itself is intrinsically robust and
stable.

B. Case 2: Double Mach Reflection

This numerical example is a classical test example dating at least
back to the famous paper of Woodward and Collela.>* It has been
used extensively in the literature as a test case. It considers the
reflection of a planar Mach shock in air from a wedge.

The computational domain is [0,4] x [0,1] with a mesh size of
481 x 121, and the reflecting wall lies at the bottom of the com-
putational domain for é <x <4. Initially, the right moving Mach
10 shock is positioned at x = %, y =0, and makes a 60-deg angle
with the x axis and extends to the top of the problem domain at
y = 1. The short region from x =0 to % along the bottom boundary
is always assigned values for the initial postshock flow. The left-
hand boundary is also assigned with the initial postshock values,
and at the right-hand boundary all gradients are set to zero. At the
top boundary, the flow values are set to describe the exact motion
of the Mach 10 shock. The undisturbed air ahead of the shock has a
density of 1.4 and a pressure of 1.

The flow is computed using the first- and second-order BGK
scheme with AF-ADI method for time integration at CFL num-
ber of 0.9. The problem was run until r =0.2. The density and
pressure contours with 30 equally spaced contour lines are plot-
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Fig. 4 Pressure contours and distributions for blunt body along the
stagnation line at M, =8 and 0-deg angle of attack.

ted and shown in Figs. 5a and 5b, respectively, for the first-order
BGK scheme and in Figs. 6a and 6b, respectively, for the first-order
Roe scheme for region between x =0 and 3. From these figures,
the density and pressure contours for the first-order Roe scheme
experienced the so-called kinked Mach phenomenon in compari-
son to the first-order BGK scheme, which is free from this sort of
shock instability behavior. The kinked Mach phenomenon suffered
by the Roe’s FDS scheme has been reported by many numerical
experimentations.®?>?% The numerical results of the second-order
BGK scheme for the density and pressure contours are also plotted
in Figs. 7a and 7b, respectively. The formation of the double Mach
stems are captured accurately by the BGK scheme, which are very
difficult to compute accurately.?*?® In addition, the respective den-
sity and pressure contours for the second-order Roe scheme are also
depicted in Figs. 8a and 8b. The outcome of the second-order Roe
scheme is somehow satisfactory in comparison with its first-order
results. Through the numerical results obtained, it is substantiated
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a) Density contours

a) Density contours

=l

b) Pressure contours
Fig. 5 Double Mach reflection by first-order BGK scheme, Mpock = 10.

a) Density contours

b) Pressure contours

Fig. 6 Double Mach reflection by first-order Roe scheme, Mpock = 10.

a) Density contours

b) Pressure contours

Fig. 7 Double Mach reflection by second-order BGK scheme,
Mshock=10-

b) Pressure contours

Fig. 8 Double Mach reflection by second-order Roe scheme,
Mipock =10.

Fig. 9 Physical configuration for the axisymmetric blunt body.

that the BGK scheme is more robust and superior to the Roe’s FDS
scheme in terms of shock stability at high-speed flow. The excel-
lent computational characteristics of the BGK scheme over the Roe
scheme are evident via the facts that the BGK scheme is able to
generate the solutions without causing any kinked Mach for both
first- and second-order accuracy. However, the Roe scheme is only
able to produce satisfactory results at second-order accuracy.

C. Case 3: Axisymmetric Blunt Body

This test case is taken from a numerical application found in
Hoffmann and Chiang.?' Because the flow considered for this typ-
ical problem is two-dimensional axisymmetric flow, the governing
equations are not the two-dimensional planar Euler equations as dic-
tated in Eqgs. (1) and (3). Instead, the axisymmetric Euler equations
as described in Hoffmann and Chiang?! are used as the correspond-
ing governing equations.

The physical domain of this problem is shown in Fig. 9 with a
mesh size of 71 x 53. A freestream Mach number of 18 is used to
initialize the flowfield at zero angle of attack. The four boundaries
of the axisymmetric blunt body consist of an outer boundary, which
is set at freestream conditions: a boundary along the stagnation
line, which is set with symmetry condition; an outflow boundary at
far downstream of the domain where extrapolation is used; and an
inviscid solid wall at the inner boundary.

This flow is computed using the second-order BGK scheme with
AF-ADI as the time-integration method at CFL =1.0. The solu-
tion is obtained after 1000 iterations when steady state is achieved.
The pressure contours of the BGK scheme and the Roe scheme
are depicted in Figs. 10a and 10b, respectively, and the pressure
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Fig. 10 Pressure contours and distributions for axisymmetric blunt
body along the stagnation line at M, =18 and 0-deg angle of attack.

distributions plot comparing the two schemes is shown in Fig. 10c.
The contour plots from the BGK and Roe scheme are in agreement
with each other and with the results of Hoffmann and Chiang.?'
Comparing the pressure distributions along the stagnation line for
the two schemes, they show that the solutions provided by the Roe
scheme after the bow shock are not as smooth as the BGK scheme.
This again indicates that the BGK scheme is better than the Roe
scheme in terms of flow resolution for hypersonic flows.

D. Case 4: Hypersonic Ramp

This numerical example studies the Mach 7 flow over a 15-deg
ramp, and it is taken from Slater.”” The computations carried out
by Slater?’ in his study use the Navier—Stokes equations. However,
in this study the flow problem will be used as a platform to test
the compressible Euler equations flow solver, namely, the BGK
scheme. This study is feasible because at hypersonic speed and at
low angle of attack the viscosity effects of the flow can be considered
as negligible.

For this study, a single-block, two dimensional H-grid with mesh
size of 151 x 101 is used. The grid is shown in Fig. 11. The flow is
initialized with a uniform flow at freestream Mach number of 7 at

Fig. 11 Grid for the hypersonic ramp.
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a) Second-order BGK scheme

Level P

15 7.3150

14 6.8939

13 6.4729

12 6.0518

11 5.6307

10  5.2096

9 4.7886

8 4.3675

7 3.9464

6 3.5254

5 3.1043

4 2.6832

3 2.2621

2 1.8411

1 1.4200 i

1‘<@ﬂg«

0

b) Second-order Roe scheme

Fig. 12 Pressure contours for the hypersonic ramp at M., =7 and
0-deg angle of attack.

zero angle of attack. At the inlet where the inflow condition is above
Mach 1.0, the boundary is specified as frozen boundary. Because the
outlet of the computational domain is supersonic, an extrapolation
method of flow variables is prescribed. While at the upper and the
lower boundaries of the ramp, where the boundaries are solid walls,
an inviscid wall condition is used.

This solution is computed using the second-order BGK scheme
with an AF-ADI time-integration method. The CFL number used is
1.0. The computations are carried out until steady state is reached.
The computed pressure contours for the BGK and Roe schemes are
showninFigs. 12aand 12b, respectively. They show good agreement
with each other and with the contour plot of Slater.”’” The pressure
distributions of the two schemes along the lower wall boundary of
the ramp are compared with each other and with the distribution
from Slater.?” This is shown in Fig. 13. From this figure, one can see
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—=o6—— BGKscheme
—=a—— Roe scheme
Numerical (Ref. [26])

Pressure
B

0 0.5 1 1.5

Fig. 13 Comparison of pressure distributions for the hypersonic ramp
by the second-order BGK and Roe schemes with numerical results from
Slater.?’

that the BGK and the Roe schemes are able to capture the location of
the shock at x = 0.5 more accurately than Slater.?’ In addition, the
shock resolution capability presented by the BGK scheme is better
in comparison to the Roe scheme as evident in Fig. 13. Finally,
the numerical results obtained for this study verify our previous
assumptions that at very high speed and at low angle of attack the
viscosity effect is negligible for a calorically perfect gas.

V. Conclusions

The Bhatnagar-Gross—Krook (BGK) scheme is successfully ex-
tended to the simulation of two-dimensional compressible inviscid
flow at hypersonic speeds in the present paper. Four distinct numer-
ical examples have been tested with the BGK scheme and their nu-
merical results verified. The first and second tests” outcomes show
that the BGK scheme is very robust and stable in comparison to
Roe’s flux-difference-splitting scheme, where the Roe scheme en-
countered carbuncle and kinked Mach stem phenomenon. The car-
buncle and the kinked Mach stem phenomenon that occur in the
simulations are examples of shock instabilities that occur at hyper-
sonic flows. The third and the fourth tests, namely, axisymmetric
blunt body and hypersonic ramp, demonstrate that the BGK scheme
is more accurate in comparison to the Roe scheme. Thus, this study
concludes that the BGK scheme is able to produce numerical results
with better accuracy, high-resolution capabilities to capture shock,
rarefaction, and contact discontinuities as well as being robust and
stable.
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